Центральное растяжение-сжатие возникает в случае, когда на концах стержня вдоль его оси действуют две равные противоположно направленные силы. При этом в каждом сечении по длине стержня возникает внутреннее усилие (продольная сила $N$ кН), которая численно равна сумме всех сил, которые действуют вдоль оси стержня и расположены с одной стороны от сечения.
Из условий равновесия отсеченной части стержня $N = F$.
Продольная сила при растяжении считается положительной, при сжатии – отрицательной.
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения.
Участком нагружения считают часть бруса между внешними силами.
На представленном рисунке 3 участка нагружения.
Воспользуемся методом сечений и определим внутренние силовые факторы внутри каждого участка.
Расчет начинаем со свободного конца бруса, чтобы не определять величины реакций в опорах.
Продольная сила положительна, участок 1 растянут.
Продольная сила положительна, участок 2 растянут.
Продольная сила отрицательна, участок 3 сжат.
Полученное значение N3 равно реакции в заделке.
Под схемой бруса строим эпюру продольной силы (рис. 20.2, б).
Эпюрой продольной силы называется график распределения продольной силы вдоль оси бруса.
Ось эпюры параллельна продольной оси.
Нулевая линия проводится тонкой линией. Значения сил откладывают от оси, положительные — вверх, отрицательные — вниз.
В пределах одного участка значение силы не меняется, поэтому эпюра очерчивается отрезками прямых линий, параллельными оси Oz.
Величина внутренней силы дает представление о сопротивлении поперечного сечения в целом (интегрально), но не дает представления об интенсивности работы материала в отдельных точках сечения. Так, при равной продольной силе материал в стержне с большим сечением будет работать менее интенсивно, менее напряженно чем меньший.
Напряжения – внутренние силы, приходящиеся на единицу площади сечения. Напряжения, направленные перпендикулярно (по нормали) к сечению называются нормальными.
Единицы измерения напряжений - Па, кПа, МПа.
Знаки напряжений принимают так, как и для продольной силы.
Действующие напряжения - напряжения, которые возникают в рассматриваемом сечении.
Любой стержень в момент разрушения имеет определенные напряжения, которые зависят только от материала стержня и не зависят от площади сечения.
Допускаемые напряжения $\left[ \sigma \right]$ – такие напряжения, которые не должны быть превышены в запроектированных конструкциях. Допустимые напряжения зависят от прочности материала, характера его разрушения, степени ответственности конструкции.
Принцип Сен-Венана: в сечениях, достаточно удаленных от места приложения нагрузки, распределение напряжений не зависит от способа приложения нагрузки, а зависит только от его равнодействующей.
то есть, распределение напряжений в сечении I-I для трех различных случаев, показанных на рисунке, принимается одинаковым.
Рисунок - иллюстрация принципа Сен-Венана
При растяжении возникает удлинение стержня – разница между длиной стержня до и после погрузки. Эта величина называется абсолютной деформацией.
$\Delta l = {l_1} - l$
Относительная деформация – отношение абсолютной деформации к первоначальной длине.
$\varepsilon = \frac{{\Delta l}}{l}$
$\sigma = E \cdot \varepsilon $
Таблица - физико-механические характеристики материалов
Материал |
Модуль упругости, х1010 Па |
Коэффициент Пуассона |
Сталь |
19 – 21 |
0,25 – 0,33 |
Чугун |
11,5 – 16 |
0,23 – 0,27 |
Медь, латунь, бронза |
10 |
0,31 – 0,42 |
Алюминий |
7 |
0,32 – 0,36 |
Кирпичная кладка |
0,3 |
0,2 |
Бетон |
1 – 3 |
0,1 – 0,17 |
Каучук |
0,0008 |
0,47 |