Материал представляет собой однородную сплошную среду; свойства материала во всех точках тела одинаковы и не зависят от размеров тела. Атомистическая теория дискретного строения вещества во внимание не принимается. Гипотеза позволяет не учитывать особенности кристаллической структуры металла, разный химический состав и прочностные свойства связующего и наполнителей в пластмассах, бетонах (щебень, песок, цемент), наличие сучков в древесине.
Физико-механические свойства материала одинаковы по всем направлениям. В некоторых случаях предположение об изотропии неприемлемо, материал является анизотропным. Так, анизотропными являются древесина, свойства которой вдоль и поперек волокон различны, а также армированные (композиционные) материалы.
Тело способно восстанавливать свою первоначальную форму и размеры после устранения причин, вызвавших его деформацию.
Перемещения точек конструкции в упругой стадии работы материала прямо пропорциональны силам, вызывающим эти перемещения (справедлив закон Гука). В действительности реальные тела можно считать упругими только до определенных величин нагрузок, и это необходимо учитывать, применяя формулы сопротивления материалов.
Поперечные сечения, плоские и нормальные к оси стержня до приложения к нему нагрузки, остаются плоскими и нормальными к его оси в деформированном состоянии; при изгибе сечения поворачиваются не искривляясь.
В сечениях, достаточно удаленных от мест приложения нагрузки, деформация тела не зависит от конкретного способа нагружения и определяется только статическим эквивалентом нагрузки. Резко выраженная неравномерность распределения напряжений по сечению 2-2, показанная на рисунке, постепенно выравнивается (сечение
3-3) и на удалении, равном ширине сечения (сечения 4-4 и 5-5), исчезает.
Рис. 1.1. Распределение нормальных напряжений в поперечных сечениях стержня при растяжении сосредоточенной силой
Если к активным силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил. Принцип используется в расчетах на прочность при динамическом действии сил.
Результат воздействия нескольких внешних факторов равен сумме результатов воздействия каждого из них, прикладываемого в отдельности, и не зависит от последовательности их приложения. Это же справедливо и в отношении деформаций.
Деформации в точках тела настолько малы по сравнению с размерами деформируемого тела, что не оказывают существенного влияния на взаимное расположение нагрузок, приложенных к телу. Допущение применяют при составлении условий статики, считая тело абсолютно твердым.
Почти во всех реальных деталях и элементах конструкций указанное допущение полностью не выполняется. Внутренние напряжения возникают в деревянных конструкциях вследствие неравномерного высыхания; в стальных и чугунных отливках – вследствие неравномерного охлаждения; в стальных деталях – вследствие термической (закалка…) и механической (шлифование…) обработок. Формирование колесных пар для железнодорожных вагонов осуществляют путем запрессовки колес на ось. За счет натяга создаются напряжения в ступице колеса и подступичной части оси.
С учетом изложенных гипотез и допущений, а также разбросов результатов экспериментов по определению механических свойств, точность инженерных расчетов не превышает 3–5 %. В некоторых случаях погрешность 10–15 % считают приемлемой. На практике, если нет специальных указаний, результат округляют до трех значащих цифр. Например, результат 568 234 следует округлить до 568 000, а результат 0,00237648 – до 0,00238 или 2,38·10-3.