Радиус инерции

Момент инерции относительно оси возможно выразить, как произведение площади сечения фигуры на квадрат некоторого расстояния до этой оси.

${I_x} = A \cdot i_x^2$        ${I_y} = A \cdot i_y^2$, где ${i_{x}}\,\,{i_y}$радиусы инерции [м, см].

${i_x} = \sqrt {\frac{{{I_x}}}{A}} ,\,\,\,\,{i_y} = \sqrt {\frac{{{I_y}}}{A}} $.

Другими словами, радиус инерции равен расстоянию от оси до той точки, в которой следует условно сосредоточить площадь сечения А, чтобы момент инерции одной этой точки был равен моменту инерции всего сечения.

Новости сайта:

19-03-2017 00:00

Процент по партнерской программе увеличен до 30%.


17-03-2017 09:00

Добавлены опции в расчете рам и ферм.

Теперь можно нажатием одной кнопки:

  • убрать все нагрузки либо опоры
  • сделать соединения всех узлов шарнирными либо жесткими
  • скопировать / вставить расчетную схему

Напоминаем, несколькими днями ранее добавлена возможность задания треугольной (трапециедальной) распределенной нагрузки.


16-03-2017 06:02

Хорошая новость! В расчете ферм добавлена возможность задания треугольной нагрузки.


17-01-2017 23:00

В расчете на растяжение-сжатие появилась возможность задавать распределенную нагрузку q


08-01-2017 00:00

Добавлен калькулятор двойной (билинейной) интерполяции и Косой изгиб, подбор сечения


04-01-2017 20:44

Обратите внимание на расчет балок - теперь уравнения внутренних сил расписаны еще более корректно, для консольнх балок всегда производится запись уравнений с незакрепленного края.


01-01-2017 00:00

С НОВЫМ ГОДОМ !!!


21-11-2016 22:00

Подправлен расчет геометрических характеристик - теперь текстовые пояснения более расписаны и аккуратны.