Косой изгиб, подбор сечения

Косой изгиб возникнет, если силовая плоскость не совпадает ни с одной из главных плоскостей балки, проще говоря, если сил направлен под углом к главным осям сечения.

Напряжения при косом изгибе для сечений с угловыми точками (прямоугольник, двутавр, швеллер и др.) определяются как

$$ \sigma = \frac{M_x}{ W_x }+\frac{M_y}{ W_y } $$

Подбор сечения при косом изгибе осуществляется с учетом возникновения моментов в обеих главных плоскостях балки.

$$ W_x = \frac{1}{ [ \sigma ] }(M_x+M_y \frac {W_x}{W_y}) $$ В прямоугольном сечении отношение моментов сопротивления $W_x/W_y=(h/b)^2$, поэтому расчет будет иметь вид

Момент в вертикальной плоскости Mx = кНм
Момент в горизонтальной плоскости My = кНм
Допускаемое напряжение [σ] = МПа
Отношение высоты к ширине сечения h / b =

Необходимый момент сопротивления сечения $$ W_x = \frac{1}{ [ \sigma ] }(M_x+M_y \cdot (h/b)^2) = \frac{1}{ 40 }( 12000+2200 \cdot 2.5^2) = 644см^3 $$ Поскольку для прямоугольного сечения момент сопротивления определяется так $$W_x = \frac{b \cdot h^2}{6} = \frac{b^3 \cdot (h/b)^2}{6} $$ Ширина сечения $$b=\sqrt[3]{\frac{6 \cdot W_x}{(h/b)^2}} = \sqrt[3]{\frac{6 \cdot 644 }{ 2.5^2}} = 8.52 см $$ Высота сечения $$ h=8.52 \cdot 2.5 = 21.3 см$$ Площадь сечения $$ A=8.52 \cdot 21.3 = 181 см^2$$